Background image of landing

Unrivalled
Education
Solutions for your
Family

How do you apply the intersecting chords theorem?

To apply the intersecting chords theorem, you need to multiply the lengths of the segments of one chord and equate that product to the product of the segments of the other chord.

The intersecting chords theorem states that when two chords intersect within a circle, the products of the lengths of the segments of each chord are equal. For example, consider a circle with two chords, ABAB and CDCD, that intersect at point EE. According to the theorem, the relationship can be expressed as:

AE×EB=CE×EDAE \times EB = CE \times ED

To effectively use this theorem, first identify the intersection point where the chords meet. Then, measure or note the lengths of the segments formed by this intersection. For instance, if chord ABAB is divided into segments AEAE and EBEB, and chord CDCD is divided into segments CECE and EDED, you would measure the lengths of these segments.

As an example, suppose we have the following segment lengths: AE=3cmAE = 3 \, \text{cm}, EB=4cmEB = 4 \, \text{cm}, CE=2cmCE = 2 \, \text{cm}, and ED=xcmED = x \, \text{cm}. You would set up the equation based on the theorem:

3×4=2×x3 \times 4 = 2 \times x

Solving this gives:

12=2x12 = 2x

From this, we can determine that:

x=6cmx = 6 \, \text{cm}

This indicates that segment EDED is 6cm6 \, \text{cm} long. This method is particularly useful for finding unknown lengths in problems involving intersecting chords within a circle.

Answered by: Dr. Angela Davis
GCSE Maths Tutor
Medal Icon

100%

Globe Icon

Global

Crest Icon

97%

Professional Tutors

International Tuition

Independent School Entrance Success

All of our elite tutors are full-time professionals, with at least five years of tuition experience and over 5000 accrued teaching hours in their subject.

Based in Cambridge, with operations spanning the globe, we can provide our services to support your family anywhere.

Our families consistently gain offers from at least one of their target schools, including Eton, Harrow, Wellington and Wycombe Abbey.

Medal Icon

100%

Professional Tutors

All of our elite tutors are full-time professionals, with at least five years of tuition experience and over 5000 accrued teaching hours in their subject.

Globe Icon

Global

International Tuition

Based in Cambridge, with operations spanning the globe, we can provide our services to support your family anywhere.

Crest Icon

97%

Independent School Entrance Success

Our families consistently gain offers from at least one of their target schools, including Eton, Harrow, Wellington and Wycombe Abbey.

Book a free
30-minute consultation
session

At the Beyond Tutors we recognise that no two students are the same. 

That’s why we’ve transcended the traditional online tutoring model of cookie-cutter solutions to intricate educational problems. Instead, we devise a bespoke tutoring plan for each individual student, to support you on your path to academic success.

To help us understand your unique educational needs, we provide a free 30-minute consultation with one of our founding partners, so we can devise the tutoring plan that’s right for you.

To ensure we can best prepare for this consultation, we ask you to fill out the short form below.

Hire a Tutor

All the form fields are optional, but we ask you to provide as much information as possible so that we are in a better position to quickly meet your tutoring requirements.

Still have questions?
Let's get in touch